Spike-timing Dependent Plasticity and Mutual Information Maximization for a Spiking Neuron Model
نویسندگان
چکیده
We derive an optimal learning rule in the sense of mutual information maximization for a spiking neuron model. Under the assumption of small fluctuations of the input, we find a spike-timing dependent plasticity (STDP) function which depends on the time course of excitatory postsynaptic potentials (EPSPs) and the autocorrelation function of the postsynaptic neuron. We show that the STDP function has both positive and negative phases. The positive phase is related to the shape of the EPSP while the negative phase is controlled by neuronal refractoriness.
منابع مشابه
Spike-Timing-Dependent Plasticity and Relevant Mutual Information Maximization
Synaptic plasticity was recently shown to depend on the relative timing of the pre- and postsynaptic spikes. This article analytically derives a spike-dependent learning rule based on the principle of information maximization for a single neuron with spiking inputs. This rule is then transformed into a biologically feasible rule, which is compared to the experimentally observed plasticity. This...
متن کاملGeneralized Bienenstock-Cooper-Munro rule for spiking neurons that maximizes information transmission.
Maximization of information transmission by a spiking-neuron model predicts changes of synaptic connections that depend on timing of pre- and postsynaptic spikes and on the postsynaptic membrane potential. Under the assumption of Poisson firing statistics, the synaptic update rule exhibits all of the features of the Bienenstock-Cooper-Munro rule, in particular, regimes of synaptic potentiation ...
متن کاملA CMOS Spiking Neural Network Circuit with Symmetric/Asymmetric STDP Function
SUMMARY In this paper, we propose an analog CMOS circuit which achieves spiking neural networks with spike-timing dependent synaptic plasticity (STDP). In particular, we propose a STDP circuit with symmetric function for the first time, and also we demonstrate associative memory operation in a Hopfield-type feedback network with STDP learning. In our spiking neuron model, analog information exp...
متن کاملLearning, self-organisation and homeostasis in spiking neuron networks using spike-timing dependent plasticity
Learning, self-organisation and homeostasis in spiking neuron networks using spike-timing dependent plasticity.
متن کاملIndependent Component Analysis in Spiking Neurons
Although models based on independent component analysis (ICA) have been successful in explaining various properties of sensory coding in the cortex, it remains unclear how networks of spiking neurons using realistic plasticity rules can realize such computation. Here, we propose a biologically plausible mechanism for ICA-like learning with spiking neurons. Our model combines spike-timing depend...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004